Nancy is a 7th and 8th grade CPS science teacher who has been teaching since 1999. She strongly believes that social justice issues should not be left out of the classroom. She wants her students to know that they have the power and responsibility to make positive changes in their community and in the world around them.

**Website: http://nancyvibarra.weebly.com/**

**Amazing Teaching Moment**

The lesson I presented to my seventh-grade life science students addressed the Flint, Michigan water crisis. I began by showing them a short video clip explaining the problem. After that, I gave them a handout of a water quality science experiment conducted by scientists from Virginia Tech. As a whole group and using a graphic organizer, the students read the study and determined the hypothesis, independent, dependent and controlled variables, data collected and conclusion. I wanted my students to understand that the scientific process is something that is actually used in real life applications and has value in the scientific field.

We learned about the high corrosivity of the Flint River water and what could have been done to prevent the lead from leaching from the pipes. We looked at several factors that went into making the decision to change the water supply from the lake to the river and how the socio-economic status of the customers may have allowed Flint to happen. We followed by drawing political cartoons that represented the Flint water crisis. As a culminating activity, we went to the Peggy Notebaert Museum and took a workshop titled H2O Investigations. Here, they looked at macro-organisms to determine the quality of the river water sample.

This lesson had several amazing moments. The first was when we were able to take an ongoing present day experiment and apply it to the scientific method. The second moment was watching the students come up with a political cartoon that represented what they had learned about the Flint crisis. I would never have imagined the high level of understanding and higher order thinking skills that creating a political cartoon would take. Lastly, watching the students’ high level of engagement in the water quality lab at the museum was impressive.

**Hashtags**

#Flint, #scientificmethod, #socialjustice, #currenteventsinscience, #politicalcartoons, #lead, #cleandrinkingwater, #H2Oinvestigations, #7thgradelifescience, #PeggyNotebaert

]]>Elena Concepcion is a Chicago Public Schools middle school teacher. She has been teaching since 2005 and she believes she can reach her students in many ways. As a math teacher, she aims to teach a deeper understanding of mathematics for her students to truly appreciate it.

**Website: http://ecteach.weebly.com/**

**Amazing Teaching Moment**

My amazing teaching moment was when I taught a lesson called “Solving Multi- Step Problems with Fractions and Mixed Numbers,” from the 6th grade Go Math curriculum. In this lesson, students had to think more complexly about problem solving, including fractions and mixed numbers and building upon prior knowledge with the order of operations also referred to as PEMDAS. The first thing I did was to review order of operations with my 6th grade students because it was not in their textbook. When doing that, I went over the basic understanding of PEMDAS which my students may or may not have recalled. However, I then reviewed a pretty intense word problem that was both multistep and also included fractions and mixed numbers. The students were then instructed to work in groups to solve a problem and go through the steps using PEMDAS and their understanding to explain it. On the first day, students worked on one part of the problem, for example, setting up the problem using parentheses and the appropriate operations necessary to solve. Students then solved their problems on chart paper and as a summative assessment they presented it, ultimately teaching this complex problem to the rest of the class. This was my amazing teaching moment because it really displayed the understanding that students gained once they finished the task. I also had students who wanted to work before and after class and at home on this assignment to ensure their understanding. This assignment definitely exceeded my expectations in that it helped my students to become aware of what they’re doing in math and also loving it!

**Hashtags**

#dividingfractions, #orderofoperations, #manipulatives, #collaboration, #solvingmultistepproblems, #conceptualunderstanding, #middleschoolmath, #pemdas, #6thgrade, #math, #studentownership

]]>Davina Allen facilitates in a Creative Learning lab designed for students in middle school. She also coaches teachers K-8 helping them design lessons that involve the Engineering Design Process. She is a proud parent of two beautiful children. Davina believes that in order for students to be successful they have to be able to function as a team.

**Website: http://dtallen00.weebly.com/**

**Amazing Teaching Moment**

Three years ago, I taught to a 6th-7th grade split that had a total of 41 students. My goal was to get students involved in a formal discussion about math while being respectful to others ideas. I decided to step outside the box and try a Socratic Seminar with math. Socratic seminar is a formal discussion, based on a text in which a group leader uses open-ended question.

Normally, Socratic Seminars Circle is used in subjects such as reading, science and social studies, but the challenge seemed interesting. I figured the Socratic Circle would get students discussing their answers and provide assistance for struggling students.

I took a couple of days to decide on a problem that would allow for open-ended questions and discussion and would also force students to listen to the comments and the questions of others. Students also needed to be able to articulate their

own thoughts and disagree with others in a positive manner.

I chose to use a math problem that related to student’s real life. Students had to look at several cell phone companies and their plans and determine what would be the best option economically. Students had to be able to perform the algorithm and also defend and justify their answer. Students were split into two circles: an outer and an inner circle. The outer circle was the observation circle in which they listened and observed the interaction of the inner circle.

A group leader was assigned and made responsible for keeping an ongoing discussion in the inner circle. The inner circle started the discussion about the math problem. The individuals talking gave the group their answer and waited for responses. Other students joined in the discussion by either agreeing, disagreeing, (with explanation) or by asking clarifying questions. The goal of the Socratic Seminar was to clarify students understanding and get an informal idea of my students’ struggles and strengths.

**Hashtags**

#math, #socraticseminar, #openendeddiscussion, #socraticmethod, #criticalthinking, #questioning, #6thgrade, #middleschool, #7thgrade

]]>Katrina transitioned from rural Arkansas to urban life. She started in business then pursued an education career. Entering her 13th year at CPS, teaches geometry at Taft High School. She earned her Bachelor’s in Organizational Management and an MBA, Masters in Secondary Education, MSIS, Administration/Supervision and Director of Special Education Certification.

**Website: http://katrinavafakos.weebly.com/**

**Amazing Teaching Moment**

The activity is designed to connect the student’s real world experiences with concepts. This activity begins with presenting the students with a map of the area around Taft High School. The students must be able to locate the “x-axis” and “y-axis”. In addition, the students must be able to locate various streets and intersections. Next, they are given a series of destinations. The students need to locate various points on the map. Next, the students must determine the midpoint based on a given set of locations. Once located, the students must calculate the distance between the various points through the use of the distance formula. In addition, the students must calculate total distance traveled. This activity could incorporate many different aspects. The students can utilize this information to calculate calories being burned while walking or jogging. The students can determine the cost of public transportation based on the various locations being visited. In addition, the students could calculate the number of gallons of gas being used by their personal car during their travels. Furthermore, the students could calculate the amount of time needed to travel by bicycle.

This activity could be taken a step further by determining the total cost of travel during their outing. In addition, they can calculate the amount of time needed to travel by walking or jogging, bicycle, public transportation, and automobile. Next, the students could provide determine the possibility of a faster route based on the locations of the traffic lights, stop signs, and congestion of the streets. Finally, the students could justify their decisions by providing the calculations needed to make the determinations. This provides many directions to layer the activity to provide rigor for the students.

**Hashtags**

#geometry, #Distance, #Polygons, #GoogleEarth, #GoogleMaps, #Maps, #SMARTBoard, #Graph

]]>After learning to love teaching while living in Africa and China with the Peace Corps, Karen settled in Chicago and has been teaching chemistry at Lane Tech for nine years. She sees science as a universal language for expressing wonder and joy, with the bonus potential for bridging cultural gaps.

**Website: http://mrstrine.weebly.com/**

**Amazing Teaching Moment**

Students begin this weighted average activity by working together as a whole class to calculate an average. The scenario is a farming analogy, where each student has welcomed a new litter of pretend piglets into the world. Note cards with cute photos representing the litters are distributed to each student, communicating how many pigs are in each litter. I reward the fastest of my five classes that correctly determines the average number of pigs per litter in our farming community.

One student summarizes her class’s method for calculating the average number of pigs per litter, then students brainstorm alternative methods. This opens the door to using a weighted average to determine the answer. Students usually resist this solution initially as being harder or more time consuming, but with a quick change of scenario, the value of a weighted average is evident.

Instead of imagining ourselves as farmers averaging pigs, we try to design a method for finding the average atomic mass of one particular element.

Immediately, it’s obvious we could never collect all the atoms of an element in the whole universe. What’s doable though is analyzing a representative sample of that element to determine what percent is what isotope. With this percent composition data and our new weighted average skills, finding the average atomic mass of an element is easy. Students finally see where those decimal mass values on the periodic table come from! Student feedback indicates that learning weighted averages felt like finding the missing piece of a puzzle. Previous teachers assumed students knew how to do this, when in fact many didn’t. Also mentioned was how practicing on familiar topics was nice because it made tackling isotopes less intimidating.

**Hashtags**

#studentchoice, #weightedaverages, #chemistry, #atomicmass, #organizedchaos, #LaneTech, #periodictable

]]>Jillian Onque began teaching in Memphis before relocating to the Chicago in 2008. She earned her B.S. in Elementary Education from the University of Memphis and her M.S. in Middle Math Education from DePaul University. Jillian is passionate about instilling the love of learning to middle school students.

**Website: http://mrsonque.weebly.com/**

**Amazing Teaching Moment**

I have always been keenly aware that the review before an assessment was crucial for students to make sure they really “understood” the concepts. I searched the internet and “borrowed” the idea of modeling my review lesson after Speed Dating. The 7th grade students sat face to face with white boards and markers. I intentionally designed problems that would test for the specific concepts that I knew that I would be assessing. The algebraic problem was displayed and the students had 5-15 seconds to solve the problems on their white boards. I walked around and observed where the students were struggling. After time was called, the students showed their whiteboard to their partner as I displayed the answer on the board. If one of the students had an incorrect answer, the other student had to find their mistake and show them how to correct their problem. If both students had the same answer but solved the problem in different ways, the students had to explain their thinking to their partner. They were given 45 seconds for this part. I was able to easily see who understood the concepts and who was still struggling. After the 45 seconds, they moved on a circle to the left.

This formative review allowed me to tailor the remainder of my pre-test instruction while I retaught small groups of students that had similar misunderstandings.

Initially, the students had difficulty with being “timed”. I told them that the new expectations for assessments were timed and that they needed to become comfortable with working under time constraints. With much apprehension, they rose to the occasion. For me, it was powerful to see how this simple activity fully engaged every student and allowed me to “watch” them as they were in action and quickly assess their understanding.

**Hashtags **

#algebra, #middleschoolmath, #assessment, #math, #7thgrade

]]>Kevin is a high school math teacher in Chicago, Illinois.

**Website: http://mrleeonline.weebly.com/**

**Amazing Teaching Moment**

This lesson is given in the middle of a study of quadratic functions. Students are learning how to complete the square in order to convert the standard form quadratic equation y = x^2 + bx + c into vertex form y = (x – h)^2 + k. This helps in graphing parabolas and will be useful again when graphing circles.

Students are given a collection of manipulatives: large squares corresponding to x^2, rectangles corresponding to x, and small squares corresponding to 1. They are then told to take a certain number of the larger tiles (for example, “Take one x^2 square and six x rectangles.”) and attempt to construct a single solid square using as many as the smaller 1 squares as they want. Once they accomplish this goal, they may be asked to see if they can find another way to do it, this time using fewer 1 squares. If they have already found the way using the fewest 1 squares, they go on to the next example (“Take one x^2 square and ten x rectangles.”).

Over the course of several examples, groups realize that the easiest way to accomplish the goal is to take half the rectangles and put them vertically next to the large square and the other half horizontally below it. Then they can fill in the empty space with the 1 squares. This process leads them to uncover the (b/2)^2 step that lies at the heart of completing the square on their own.

This activity also provides a touchstone so that later in the unit, when the students says “I forget how to complete the square,” the teacher can reply with “How did you do it with the tiles?”

**Hashtags **

#algebra, #parabolas, #findtherule, #inquiry, #highschool, #discovery, #math

]]>Katie Whittaker is a biology teacher at Lane Tech College Prep High School in Chicago, IL. She enjoys teaching science in an urban environment, because it allows students to investigate the world around them with a new perspective. Her teaching philosophy centers around making each students’ experience personal and applicable to real-world experiences.

**Website: http://kwhitt.wikispaces.com/**

**Amazing Teaching Moment**

The endocrine system is a collection of hormone producing glands that regulate metabolism, growth and development, reproduction, sleep, and mood, among other things. Although the endocrine system is important to our body’s overall fitness, it is rarely taught in high school; many students (and even some teachers) find the endocrine system “boring.” With this in mind, I have worked very hard to make my endocrine unit engaging and applicable to my students!

We begin our unit by learning about the different organs and glands that make up the endocrine system. Once everyone has become comfortable with these structures, my students complete a webquest to identify which organs and glands are responsible for making all the different hormones that regulate our bodies.

After they have become familiar with the relationship between the organs, glands, and hormones, students complete a station lab. Throughout this activity, students examine how an absence or incorrect level of the hormones they just learned about can lead to different disorders and diseases.

To culminate our unit, students are asked to pretend they are a “physician.” In groups of four, students are presented with 12 different case files. Each case file contains information about their “patient” (height, weight, blood pressure, family history, etc.), as well as a patient summarizing his/her symptoms. Students are required to use their previous knowledge of the endocrine system to successfully diagnose their patients and identify what organ/gland is malfunctioning and how this is impacting hormone levels.

Students absolutely love our case study activity, because it allows them to have fun, work together, and use the information they’ve been learning in a real-life scenario. Not only are my students engaged throughout this unit, but the excitement they exhibit when they correctly diagnose a patient can’t be matched; many students have even expressed interest in becoming a physician as a result of this lesson!

**Hashtags **

#Biology, #health, #endocrine, #casestudylab, #futuredoctors, #9thgrade, #DoogieHowser, #futuredoctors, #handsonlearning, #science

]]>Gerard teaches Middle School Science at John T. McCutcheon Elementary School in Chicago’s culturally diverse Uptown neighborhood. He has a passion for teaching STEM and instilling enthusiasm for learning in his students. Gerard is a National Board Certified Teacher and he was nominated for and received the prestigious Golden Apple Fellowship.

**Website: http://gerardkovach.weebly.com/**

**Amazing Teaching Moment**

This lesson was designed and implemented to remind my 6th grade students upon entering middle school that children are the most curious human beings and that science is about continuing to ignite that flame that sparks their natural curiosity and wonder about our world. This lesson uses simple Ultraviolet Beads to establish that foundation.

I start the lesson by presenting each student with 5-10 UV beads, string for making a personal bracelet, and of course, some scissors for cutting. I do not tell them the beads are special beads that change colors when exposed to sunlight or other sources of Ultraviolet light. With their bracelets on, we go outside with our science notebooks and a pencil.

Once outside, my students’ innate wonder is once again sparked upon observing that the UV beads change colors from their original dull white. Students then take notes by drawing and labeling changes that occur and questions that come to their minds.

Eventually, the class creates a list of reasons why they think the beads changed colors. This leads to the second goal of this lesson, designing and carrying out investigations. The students are then ready for experimental design. Many students have the misconception that temperature affects the color changes in the beads, while others think it is sunlight. My students set up experiments to see which variable is responsible. Temperature is ruled out by observing that it has no effect on the beads.

They now realize that all science begins with their own personal wonder and awe about natural phenomena in our world, and are now ready to continue questioning in order to dig deeper into other phenomena such as the electromagnetic spectrum, energy, atoms and molecules, and photosynthesis.

**Hashtags **

#Biology, #urbangardening, #studentchoice. #MSUrbanSTEM, #experimental design, #outdoorSTEM, #UVbeads, #science

]]>Binh Nguyen currently (2016) teaches Chemistry and Biology at Northside College Preparatory High School in Chicago, IL. He loves to play and tinker with bicycles, motorcycles, computers, and cameras. Additionally, he instructs archery during the weekends.

**Website: https://scienceforthenguyen.wordpress.com/**

**Amazing Teaching Moment**

My amazing teaching moment revolves around my disappointment in how I’ve been teaching my junior biology course. After a discussion with my colleague about my mundane lessons, she mentioned her desire to conduct a debate with students regarding which organelle is the best organelle. Organelles are organized structures within a cell, similar to organs within a human being. After more thought, I decided to take a risk with the debate activity.

Before the debate, students, working in groups, picked an organelle of their choice from a list. After which, I provided students with time and resources to research not only their organelle, but also their competitions. The debate was broken down into three parts: an introduction round, a bashing round, and a closing statement. On the day of the debate, students requested and got a rebuttal round added. They wanted the chance to defend any bashing. In order to select a winner, and to alleviate stress from me, I invited a panel of judges consisted of teachers and administrators.

I allowed students to be creative with this debate. They were not limited to speeches. Students decided to use songs, skits, poems, and videos to convince the judges. Needless to say, the judges had a difficult time picking the winner after the four rounds.

After the debate, students were asked to demonstrate their knowledge and understanding through additional enrichment and a survey. I provided students with a choice of three different difficulty levels of enrichment, ranging from analysis to creating. Students could read a cell analogy and analyze which component of the analogy matches up with an organelle. On the other hand, students could create their own analogy of the eukaryotic cell. With the success of the debate, I hope to elevate this activity to become similar to a presidential campaign.

**Hashtags**

#biology, #organellewars, #highschool, #cells, #sciencecompetition, #studentchoice, #science